A monogenic Hasse-Arf theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on the Hasse-Arf Theorem

We give a very simple proof of Hasse-Arf theorem in the particular case where the extension is Galois with an elementary-abelian Galois group of exponent p. It just uses the transitivity of different exponents and Hilbert’s different formula. Let E/F be a finite Galois extension with Galois group G = Gal(E/F ). Let P be a place of F and let Q be a place of E lying above P . We assume that the c...

متن کامل

The Hasse–Minkowski Theorem

The Hasse-Minkowski Theorem provides a characterization of the rational quadratic forms. What follows is a proof of the Hasse-Minkowski Theorem paraphrased from the book, Number Theory by Z.I. Borevich and I.R. Shafarevich [1]. Throughout this paper, some familiarity with the p-adic numbers and the Hilbert symbol is assumed and some basic facts about quadratic forms are stated without proof. Al...

متن کامل

Davenport-Hasse theorem and cyclotomic association schemes

Definition. Let q be a prime power and e be a divisor of q − 1. Fix a generator α of the multiplicative group of GF (q). Then 〈α〉 is a subgroup of index e and its cosets are 〈α〉α, i = 0, . . . , e− 1. Define R0 = {(x, x)|x ∈ GF (q)} Ri = {(x, y)|x, y ∈ GF (q), x− y ∈ 〈αe〉αi−1}, (1 ≤ i ≤ e) R = {Ri|0 ≤ i ≤ e} Then (GF (q),R) forms an association scheme and is called the cyclotomic scheme of clas...

متن کامل

Bohr’s Theorem for Monogenic Power Series

The main goal of this paper is to generalize Bohr’s phenomenon from complex one-dimensional analysis to higher dimensions in the framework of Quaternionic Analysis. MSC 2000: 30G35

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Théorie des Nombres de Bordeaux

سال: 2004

ISSN: 1246-7405

DOI: 10.5802/jtnb.451